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Differences in the formal potentials of successive one-electron
redox processes play a crucial role in both the mechanistic and
synthetic aspects of multielectron reactiéride AE,, valueg (and
corresponding comproportionation constaris,mg>* of linked

ing aniori® such as [B(GFs)4]~ or [B(CeH3(CFs)2)4] ~. In CHyCl,
using [NBu] ™ counterions (Table 1 and Supporting Information),
very large increases iNE;; are observed as the anion is changed
from category (i) to (i) to (iii). The increases arise primarily from

redox systems are commonly used as a guide to the extent of theshifts of E;,> to more positive potentials, owing to diminishing

electronic interaction between electron-transfer Sifeslespite
interpretive ambiguitie’8 Although the effects of both solverits
and counteriorfson AE;;; values may be largeéthere has been
little systematic investigation of the combined medium effects in
low polarity!®11solvents. On the basis of measurements employing
large-anion supporting electrolytes, we now report that systematic
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alteration of medium effects can regulate th&;, values in
molecules having multiple redox sites.
Bis(fulvalene)dinickel1,'2is a convenient model with which to
probe medium effects of anodic processes. This compound is
knownt? to undergo two reversible one-electron oxidations (eqs 1
and 2)
1=1"+e  Ey,'

)
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at potentials that are accessible in most electrolyfgg' (= —0.708

V, Ey2 = —0.228 V in CHCI,/0.1 M [NBug][PFg], all potentials
referenced to GfF€”*). Our results show that the positively charged
anodic productsl™ and1?*, are sufficiently long-lived and soluble
to allow facile measurement &E;, values by cyclic voltammetry
(CV), square wave voltammetry (SWV), and differential pulse (DP)
voltammetry!* The mixed-valent catiod™ is intrinsically delo-
calized!> making it unlikely that any variations iAE;, arise from
changes in the Robin/Day electronic delocalization éfas1".

We have measured thAE;,, values forl in representative
solvents containing one of three types of anions categorized
according to size and ion-pairing abilities: (i) a small, comparatively
strongly ion-pairing halide (usually C), (ii) an intermediate-sized
anion of the type traditionally employ&dn nonaqueous electro-
chemistry (e.g., [P&, [BF4] ), and (iii) a large weakly coordinat-
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ion-pairing of 12* with anions of increasing size. In GAl,, the
AE;/, value observed when using the BPFsalt (480 mV) is closer
to that observed using C(273 mV) than those measured with the
large anions [B(GFs)4] ~ (753 mV) or [B(GH3(CFs)2)4] ~ (744 mV).
The largesiAE;, value (850 mV) was measured in a saturated (ca.
20 mM) solution of Na[B(GH3(CFs)2)4] in CH,Cl,. The increase
of this lastAE,, value by about 100 mV over that observed in
[NBu4][B(CeH3(CF3)2)4] may be primarily traced to competition
betweenl?" and Na for the [B(GH3(CFs)2)s] ~ anion, which further
reduces the already weak ion-pairing interaction 18f with
[B(CeH3(CF3)2)4] ~- The smallest value ohE;;, measured to date
for this system is 212 mV in anisole/[NBJCI. The minimum and
maximum observed values of 212 mV and 850 mV represent a
change from 3.9« 10° to 2.5 x 10* in the values oKcomp

A similar strategy may be employed to increase the sequential
KcompValues for a complex containing a larger number of electroni-
cally interacting redox sites. The tetrakis(ferrocenyljckel dithio-
lene complex2!® may display up to six one-electron features arising
from four ferrocenyl-based oxidations and two Ni dithiolene-béksed
reductions (eq 3). In C¥Ll, containing the traditional salt [NB}+

Eyst Ey® Ey? Eyt Eylm By
24+ 23+ 22+ 2+ 2
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[PF], (E1z values of 0.29 V, 0.23 'V, 0.12 V, 0.0 \0.68 V, and
—1.46 V forEy0* throughE, .2, respectively) the four one-electron
oxidations are closely spaced, with a total of ca. 292 mV separating
the first and fourth anodic processes (adsorptior2%ftends to
occur at Pt electrodes). As shown in Figure 1, the total spread of
the four ferrocenyl-base#,,, potentials increases to 510 mV in
CH.CI,/[NBuy] [B(CeFs)4] and then to 682 mV in CECl/Na-
[B(CeH3(CR)2)4]. All four oxidation processes give stable and
soluble cations and polycations when the large fluoroarylborate
anionic electrolytes are used, making it feasible now to perform
spectral characterization of the sequential oxidation producgs of
and its analogue&.

The factors whichmaximizethe AE;, values for theoxidation
processes a2 (principally, solvent of low polarity and low donor
number?? large anion and small cation supporting electrolyte) are
expected taninimizethe AE;,, values for itsreductionprocesses,
owing to preferential and increasingly stronger ion pairing of a small
cation such as Nawith the dianion2?-. Indeed, we observe a
|0W€I'iﬂg OfEl/gl_ - E1/22_ from 770 mV in Cl‘iC'z/[NBU4][B(C6H3-
(CRs)2)4] to 472 in THF/Na[B(GH3(CFs)2)4], and then to 183 mV
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Table 1. Eyp Values (Volt vs CpzFe®") for Two One-Electron separation of sequentidd;;, values of the above two disparate
Oxidations of Bis(fulvalene)dinickel, 1 (Precision +5 mV) compounds suggests that the use\&,, measurements to assess
solvent-electrolyte® Eu! Ew?  AEip (MV) Keomp the degree of electronic interaction between metal or other linked

anisole- [NBy]ClI —0.561 —0.773 212 3.9 108 redox centers must be approached very judiciously.
CHCl2-[NBu4Cl —0.460 —0.733 273 4.1x 10¢ . .
DMF-[NBu,]CI —0.435 —0.733 298 1.1x 10P Acknowledgment. Research at the University of Vermont was
CH3CN-[NBu,][PFe] —0.223 —0.682 459 5.8¢< 107 supported by the National Science Foundation (CHE 00-92702).
CHZCN-[NBu][B(CFs)4] —0.203 —0.683 480 1310 We thank Dr. Eckhardt Schmidt for an initial samplelof
g:zg:imgﬂﬂ{g?ge&)d 18322 :8;2? ‘712(3) éi igz Note Added after ASAP: Figure Caption 1 was incorrect in
anisole-[NBU][B(CeFs)4] 000 -0.736 736 2.8¢ 1012 the version posted May 31, 2002; the corrected version was posted
CH,Cl,—Na[B(CsHs(CFs)5)s] +0.120 —0.730 850 2.5¢ 10 June 4, 2002.

a Concentration of supporting electrolyte was 0.10 M except fop@li Supporting Information Available: = Square-wave voltammograms
Na[B(CsH3(CFs)2)4], (saturated solution, ca. 0.02 M). of 1 (PDF). This material is available free of charge via the Internet at

oy http://pubs.acs.org.
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